IF2 C-8

EFFECT OF DISPERSION IN THE 3-D CONDENSED NODE TLM MESH

John S. Nielsen” and Wolfgang J. R. Hoefer™

* Lockheed Canada Inc., 1 lber Rd. Stittsville Ont. Canada K2S-1E6
** University of Ottawa, Dept. Elec. Eng. Ottawa, Ont. Canada K1N-6N5

ABSTRACT and k, in the x, y, and z directions respectively. In its final
form, the dispersion relation for the condensed node is
given as [4]
The general dispersion equation, derived for the 3D-
TLM condensed node mesh is presented and compared det (I-TPS) =0
to dispersion of the FD-TD and the expanded node TLM M

schemes. Spurious mode propagation, as predicted by

the dispersion equation for the condensed node, is also

addressed. Analysis of dispersive effects is essential to lis a 12 by 12 identity matrix, T is given by
assessing abnormalities in time domain simulations.

=g kAT

where "d" is the node lattice spacing and ko is the

propagation constant along the interconnecting

INTRODUCTION transmission lines. $§ is the scattering matrix of the

condensed node.[1] The elements of P are O except for;

The 3D TLM condensed nodes, developed by P. Johns,

are arranged in a cubic lattice structure interconnected by

dispersionless transmission lines.[1} As with any

numerical method that relies on spatial and time sampling,

the condensed node has undesired dispersion and

spurious solutions associated with it. The dispersion

characteristics of the condensed node are superior to that P, = p = glkd

of the FD-TD scheme developed by Yee [2] and the 2.2 48

expanded TLM node [3], as demonstrated by the general
dispersion equation for the condensed node.[4]

Plane waves excited in the 3D mesh, that have spatial
wavelengths that are only a few node spacings in length,
suffer significant dispersion effects.[4] If the spatial
wavelength is sufficiently short, propagating spurious
solutions can be excited.[5] P 4

= = Jjk,d
Py, = B, = %

GENERAL DISPERSION RELATION

The general dispersion relation for the condensed
node mesh is derived by applying Floguet’s theorem to an
infinite three dimensional mesh. A plane wave solution is

. A Pog = Ppy,; = e
assumed with component propagation constants of k,, k,
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Fig.1 displays resuits of the dispersion equation
evaluated for a plane wave propagating in the y-z plane
such that k,=0. Note that the dispersion is zero along
the y and z axis and that the maximum dispersion occurs
for propagation along the diagonal y=z.

The general dispersion relation for the FD-TD 3D
node is given by [6]

: s
sin (kodE) =

k. d k. d k. d
2 2 a2 X 32 4 Ly z
s?(sin (T)+51n (—2 ) +sin’ (——2 ) @)

where s is the stability factor. Fig. 2 shows the resulting
family of dispersion curves for the case when s=% where
the FD-TD method is identical to the expanded 3D TLM
formulation. Maximum dispersion occurs for propagation
along the axis where the dispersion of the condensed
node is zero. Minimum dispersion occurs along the
diagonal k, = k,. The dispersion along this bearing is
identical to the worst case dispersion of the condensed
node. The dispersion for the FD-TD scheme can be
impr‘Pved slightly by choosing the maximum stability factor
of 3".[4]
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Fig.1 Plot of the dispersion characteristics for a

condensed node TLM mesh supporting a plane wave
propagating in the y-z plane.
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Fig.2 Plot of the dispersion characteristics for the FD-TD
node with s =% supporting a plane wave propagating in the
y-z plane. (Note that k, in the FD-TD plot is twice the k,
used in the corresponding TLM plot due to the velocity
difference of a factor of 2.[3])

SPURIOUS SOLUTIONS

Consider an arbitrary excitation source in the x-y plane
of an infinite 3D mesh. This source will excite an infinite
number of evanescent and propagating plane waves.
The propagation characteristics of each plane wave
depends on the excitation frequency and the components
of the transverse propagation vector, k, and k,. The plane
wave falls into one of four regions as outlined in Fig.3.
The first region for small k,d and k.d is the region of
"physical propagating modes". Assuming an excitation
frequency such that k d is small relative to #, the boundary
of this region is approximately circular, of radius 2k d.
The adjacent region is denoted "physical evanescent
modes" characterized by a purely imaginary k. d that
increases in magnitude with the modal index. Near the
physical mode cutoff boundary, the imaginary part of k,d
follows Eq.3 accurately provided kd is reasonably small.
However, as the spatial frequency is increased the
imaginary part of k. d decreases rapidly and becomes
negative infinity along the diagonal k. d+k,d=. Crossing
this line such that k,d+k d>w, the imaginary part of k,d
increases toward 0. Hence this region is denoted
"spurious evanescent modes". The boundary between
the spurious evanescent and propagating modes is a
mirror image of the boundary separating the physical
propagating and evanescent modes. The spurious
propagating modes have a propagation constant of
approximately



kd=m= & ‘/2kod - (n-k,d)? - (17;—kyd)2 @)

For these modes k,d is real, lossless

transmission.

Spurious modes can be observed in a 3D TLM mesh
cavity bounded by Dirichlet walls by exciting a mode with
k., K, and k, close to 7/d. As a demonstration, a cavity of
14 X 6 X € nodes was excited with the TE mode with k. d
= kd = 7 and kd=n(N-1)/N,. The field distribution
remained invariant with respect to time and oscillated with
a pqriod of 56.6At, which corresponded exactly to the
spurious eigen-solution of Eq.1.
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Fig.3 Spectral regions corresponding to physical and
spurious plane wave mode propagation.

Taken from J. Nielsen, "Spurious modes of the TLM
Condensed node formulation” IEEE Microwave and
Guided Letters, Vol.1. No.8, 1991
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CONCLUSION

In this paper, the general dispersion equation of the
condensed node was addressed demonstrating superior
dispersion characteristics in comparison to the FD-TD
method. Attributes of the spurious modes can also be
derived from the dispersion equation. There are as many
spurious propagating modes as physically propagating
modes. Hence spurious modes cannot be eliminated by
temporal filtering but only through 3D spatial low pass
filtering.

The eigenvector of the matrix, -TPS, in the dispersion
relation of Eq.1 corresponds to the incident voltage vector
of the condensed node. Hence, the eigen-field quantities
of any mode can be determined. An excitation field can
then be written as a superposition of modes in the TLM
mesh to determine errors in the TLM simulation due to
dispersion and spurious modes.
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