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ABSTRACT

The general dispersion equation, derived for the 3D-
TLM condensed node mesh is presented and compared
to dispersion of the FD-TD and the expanded node TLM
schemes. Spurious mode propagation, as predicted by
the dispersion equation for the condensed node, is also
addressed. Analysis of dispersive effects is essential to
assessing abnormalities in time domain simulations.

INTRODUCTION

The 3D TLM condensed nodes, developed by P. Johnsj
are arranged in a cubic lattice structure interconnected by
dispersionless transmission lines. [1 ] I% with any
numerical method that relies on spatial and time sampling,
the condensed node has undesired dispersion and
spurious solutions associated with it. The dispersion
characteristics of the condensed node are superior to that
of the FD-TD scheme developed by Yee [2] and the
expanded TLM node [3], as demonstrated by the general
dispersion equation for the condensed node. [4]

Plane waves excited in the 3D mesh, that have spatial
wavelengths that are only a few node spacings in length,
suffer significant dispersion effects. [4] If the spatial
wavelength is sufficiently short, propagating spurious
solutions can be excited. [5]

GENERAL DISPERSION REfATION

The general dispersion relation for the condensed
node mesh is derived by applying Floquet’s theorem to an
infinite three dimensional mesh. A plane wave solution is
assumed with component propagation constants of kX, \

and k, in the x, y, and z directions respectively. h? its final
form, the dispersion relation for the condensed node is
given as [4]

det (X-!rPS) ‘O
(1)

1 is a 12 by 12 identity matrix, T is given by

== ~ -j.W=

where “d” is the node lattice spacing and ko is the
propagation constant along the interconnecting

transmission lines. S is the scattering matrix of the
condensed node. [1] The elements of P are O except for;

P 1,12 = P5,7 = e~ ‘Y d

P2,9 = P4,8 = ejkzd

P3,11 = P6,10 = eik’d

P 7,5 = P121 = e-ikyd

P 8,4 = P92 = e-jkzd

P 10,6 = P11,3 = e-ikxd

853

CH3141-9/92/0000-0853$01.0001992 IEEE 1992 IEEE MTT-S Digest



Fig. 1 displays results of the dispersion equation
evaluated for a plane wave propagating in the y-z plane
such that kX=0. Note that the dispersion is zero along
the y and z axis and that the maximum dispersion occurs

for propagation along the diagonal y =z.
The general dispersion relation for the FD-TD 3D

node is given by [6]

sin (lcOcij) =

‘jd) +Sinz (
kyd

s2(sin2(— ~) +Sinz ( y) )
(2)

where s is the stability factor. Fig. 2 shows the resulting
family of dispersion curves for the case when s=% where
the FD-TD method is identical to the expanded 3D TLM
formulation. Maximum dispersion occurs for propagation
along the axis where the dispersion of the condensed
node is zero. Minimum dispersion occurs along the
diagonal kY = k,. The dispersion along this bearing is
identical to the worst case dispersion of the condensed
node. The dis~ersion for the FD-TD scheme can be

improved slightly by choosing the maximum stability factor
of “3’”.[4] -
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Fig.1 Plot of the dispersion characteristics
condensed node TLM mesh supporting a plane
propagating in the y-z plane.
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Fig.2 Plot of the dispersion characteristics for the FD-TD
node withs =; supporting a plane wave propagating in the
y-z plane. (Note that kO in the FD-TD plot is twice the kO
used in the corresponding TLM plot due to the velocity
difference of a factor of 2. [3])

SPURIOUS SOLUTIONS

Consider an arbitrary excitation source in the x-y plane
of an infinite 3D mesh. This source will excite an infinite
number of evanescent and propagating plane waves.
The propagation characteristics of each plane wave
depends on the excitation frequency and the components
of the transverse propagation vector, kXand ky The plane
wave falls into one of four regions as outlined in Fig.3.
The first region for small kXd and kYd, is the region of
“physical propagating modes”. Assummg an excitation
frequency such that kOdis small relative to r, the boundary
of this region is approximately circular, of radius 2kOd.
The adjacent region is denoted “physical evanescent
modes” characterized by a purely imaginary kZd that
increases in magnitude with the modal index. Near the
physical mode cutoff boundary, the imaginary part of k,d
follows Eq.3 accurately provided kOd is reasonably small.
However, as the spatial frequency is increased the
imaginary part of kZd decreases rapidly and becomes
negative infinity along the diagonal kxd + kYd= n. Crossing
this line such that kXd+ kYd> n, the imaginary part of kZd
increases toward O. Hence this region is denoted
“spurious evanescent modes”. The boundary between
the spurious evanescent and propagating modes is a
mirror image of the boundary separating the physical
propagating and evanescent modes. The spurious
propagating modes have a propagation constant of
approximately
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CONCLUSION
kzd = z + ~2kOd - (m-kxd)z - (z-kYd)2

(3)

For these modes kZd is real, indicating lossless
transmission.

Spurious modes can be observed in a 3D TLM mesh
cavity bounded by Dirichlet walls by exciting a mode with
kX, kYand k, close to ~/d. As a demonstration, a cavity of
14 x 6 x 6 nodes was excited with the TE mode with kYd
= k,d = m and kXd=T(NX-l)/NX. The field distribution
remained invariant with respect to time and oscillated with
a period of 56.6 At, which corresponded exactly to the
spurious eigen-solution of Eq. 1.
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Fig.3 Spectral regions corresponding to physical and
spurious plane wave mode propagation.

‘Taken from J. Nielsen, “SpuriOus modes of the TLM
Condensed node formulation” IEEE Microwave and
Guided Letters, Vol.1. No.8, 1991

In this paper, the general dispersion equation of the
condensed node was addressed demonstrating superior
dispersion characteristics in comparison to the FD-TD
method. Attributes of the spurious modes can also be
derived from the dispersion equation. There are as many
spurious propagating modes as physically propagating
modes. Hence spurious modes cannot be eliminated by
temporal filtering but only through 3D spatial low pass
filtering.

The eigenvector of the matrix, I-TPS, in the dispersion
relation of Eq. 1 corresponds to the incident voltage vector
of the condensed node. Hence, the eigen-field quantities
of any mode can be determined. An excitation field can
then be written as a superposition of modes in the TLM
mesh to determine errors in the TLM simulation due to
dispersion and spurious modes.
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